Project 0: T-RECS: Build; Model; System
Identification

Grant King
2/21/2021

Abstract

In this report we describe how the T-RECS was built, how it func-
tions, and how experiments were used to identify the system and its
parameters. This will be done to look at the open-loop system and
understand how the T-RECS works.

1 Introduction

The Transportable Rotorcraft Electronic Control System (T-RECS) is an
educational project kit that is designed to help students learn about system
dynamics and feedback control. The T-RECS fully assembled can be seen
in Figure 1. The T-RECS can be thought about like a quarter model of a
quad-copter; this can be modeled as a arm with a pivot point at one end and
a perpendicular force on the other, more on this in section 3. The T-RECS
is controlled in this project by an Arduino Nano that is mounted to the side;
more on this in section 4. Given what we know about the system, basic
open-loop system experiments will be applied to validate the model found
from section 3; more on this in section 5. But before Modeling and System
Identification the T-RECS need to be built; this can be found in section 2.

2 Building the T-RECS

The T-RECS’” main body is made up of laser cut wood that has notches for
parts to fit into. These part are then glued together. The write up supplied

1

Figure 1: Fully built T-RECS system

with the T-RECS suggests superglue be used as the adhesive to hold the wood
parts. As the superglue was not holding well, wood glue was substituted and
held properly. The base was assembled first and let dry for 30 minutes.
The arm was assembled next and left to dry. The offsets need to be
mounted before the towers are assembled otherwise it will become very diffi-
cult to place the nuts inside the towers after drying. The board does not need
to be mounted yet. For this project and future projects, there is additional
mounting hardware that was purchased separately. This will be used to later
mount an encoder. These offsets will need to be placed as well. There is some
conflict with the hardware interfering with the next step. There are bearings
that are to be placed on the inside on the towers but the mounting offsets’
nuts do not allow the bearing to fit. To alleviate this the top two nuts on the
of the encoder side will be left off. To ensure they are not loose apply a small
amount superglue to the threads of the offsets. The towers are assembled by

placing their bottom side into the base, placing the notching into the holes
on the tower. This can be seen in Figure 2. The thin side supports are then
glued into place. Make note of the fully assembled T-RECS; if the arm is
thought of as the front, then the controller would be on the left side of the
assembly and the encoder would be on the right. With the towers in place
and glue dried, the bearing can be put into place. The arm is slid into place
and the 3D printing shafts are placed into the square pegs holes on the arm.
Make note that there is a shaft that has a flat side and this should be placed
in the left side to later interface into the controller board. The power wiring
and other hardware can be placed per the kit instructions. There are some
steps that were not performed in the assembly, such as the top wood parts
for the towers and the arm were not glued in place to allow access to the
electronics and allow some level of disassembly for troubleshooting purposes.

Figure 2: T-RECS towers glued in place [2]

3 Modeling

As said in section 1 the T-RECS can be thought about like a quarter model
of a quad-copter. This can further be broken down into a free body diagram.

3

This diagram will be used to determine diffident components of the system
and find equations that will actuary represent the motion of the system.
The free body diagram can be seen in Figure 3. In this diagram there is the
force I’ from the thrust of the propeller. There is the force due to gravity
Mgcos(f) and a resulting force Fg. This can be reduced to the moments
about a point; using the point where the arm rotates the diagram can be
seen in Figure 4.

F

A

Y

b

—
(@
Fr

Figure 3: Free body diagram of the T-RECS arm

From the free body diagram the Equation 1 is found. where inertia com-
ponent of the system is J; The mass of the system is M; this creates a
moment due to gravity that changes due to the angle the arm is at (6) and
the length of the arm L; the damping due to drag, air resistance, or friction
in the device is b.

0

Mgl cos(6) FL

b

Figure 4: Collapsed Free body Diagram

JO = —b) — Mglcos® + FL (1)

Rearranging Equation 1 so that the angle (f) and the force (F') are on
opposite sides. This gives equation 2

JO + b0 + Mglcosd = FL (2)
Dividing by inertia J gives the Equation 3.

. b. Mgl L

6+39+796089:Fj (3)

Fis equal to T. Where T represents the thrust. The Thrust also needs
to be related to the input command. The input command (u) is a value
between 0 and 1000. This value is proportional to the angular velocity (V)
of the blade. So the input u times some scalar value B is equal to V,,. The
derivation of the relationship between can be found in Appendix A.4. This
gives the Equation 4. Where p is the is the air density, A is the propeller
disk area.

Thrust =T = 2pAV? = 2pABu’ (4)
Equation 4 can be substituted into Equation 3 giving Equation 5

« b. Mgl L

0 + 39 + Jg cosf = jQ,oABu2 (5)

The constant can be lumped into single variables: % = (", @ = (Y, and
§2pAB = (3. This give Equation 6.

0 + C10 + Cy cos = Cyu? (6)

Equation 6 will be used later in determining the values of the coefficients
(C4, Cy, C3). This equation can further be used to create the transfer function
of the system by taking the Laplace transform of 6 and moving variables to
be in the correct form. The cosf can be assumed to be 6. This is due to the
small angle theorem assuming small angle charges around the angle we are
operating at; this gives 7.

6(s) Cs
T(s) (5) s?2 + Cis + Cy ")
This is the transfer function of the arm with the input of the thrust and
an output of the angle of the arm. Equation 7 can be considered the plant

of the whole system. There are other considerations that we must keep in
mind when thinking about the entire T-RECS.

Or T 6
——» C(s) ——> G(s5) —>

'

Sensor

Figure 5: Block Diagram of the system

The input from the computer the would be the the desired angle (6g).
That would be feed into a controller (C(s)) which would then take that
reference and turn it into at thrust command (u) or 7', this would then be
sent to the motor. This and the other physical components make up the
plant (G(s)). This thrust command is enacted and the arm will raise to an

angle (f). The angle is then read by a sensor. This can be seen in a block
diagram in Figure 5.

4 Hardware

The T-RECS kit comes with a components list that can be found in Appendix
A.1. Here we will look at the most important hardware components and their
function in the T-RECS. Those components are:

e Arduino Nano
e 1360 Brushless DC Motor
e Electronic Speed Control (ESC)

e Potentiometer and the Printed Circuit Board (PCB)

The Arduino Nano is a very common single-board microcontroller that is
programmed using Arduino integrated development environment (IDE). The
board can be powered from the micro-USB cable, an unregulated external
power supply (6-20 Volts on pin 30), or regulated external power supply (5
Volts on pin 27). For this project the Nano will be powered through USB.
The Arduino Nano pin out sheet can be found in the Appendix A.5. It reads
the voltage of output pin as integer values between 0 and 1023. This can be
use to map input voltages between 0 and the operating voltage. This will be
useful to understand for future projects.

The brushless motor that comes with the T-RECS kit is a Racerstar
Racing Edition 1306 BR1306 3100KV. This motor is rated for 7.4 Volts
and 3100 rpm/V. While the motor’s performance data does not have the
propeller that comes with the T-RECS kit, the Efficiency ranges from 4.3 to
5 g/W. This and other motors like it are very common in RC quad-copters,
helicopters, and airplanes motors. Brushless motors are controlled by pulses
of current that come from an Electronic Speed Control (ESC).

The ESC that is used in this project is an ARRIS Swift 20A ESC. The
ESC takes in a speed reference signal and converts that to a current to run
the motor at a specific speed. The signal that it is taking in comes from the
Arduino as a set speed command in the code on the Arduino. The input to
the ESC is given in milliseconds from the Arduino. The ESC that we are

using can operate at a max of 20 Amps and at a burst current of 30 Amps
for 10 seconds. The ESC supports a frequency signal up to 500Hz. The ESC
can be further programmed, but that is outside the scope of this project.
The parameters of the ESC can be found in Appendix A.6.

The Arduino is mounted on the side of the tower, and leads for the power
and ESC connect to a pre-made printed circuit board (PCB). This PCB
also has the potentiometer mounted where it can read the angle of the arm.
This potentiometer is a Murata sv03A103AE01R00 Rotary Position Sensor.
This sensor is used to relate the change in the output voltage of the sensor
to the change in angle of the arm. This is done by the change in internal
resistance of the sensor. These resistance changes are from the shaft as it
moves a rotating contact in the sensor; this contact forms an adjustable
voltage divider. This change in voltage is read by the Arduino and related
to the angle. This sensor can be used in feedback control but for the purpose
of this project it will only be used to read the angle of the T-RECS’s arm.

The electrical schematic for the system can be seen in Figure 6. The
T-RECS takes 12 Volts in through a barrel jack located in the base of the
tower. This voltage runs into the ESC. The ESC controls the speed of the
motor and receives control signals from the Arduino. The Arduino takes
in information about the angle from the potentiometer and can adjust the
output signal. For this project the Arduino will be sending commands to
the ESC. These commands will be inputted from a computer from Arduino
IDE’s serial monitor by a user.

5 System Identification

Experiments were run to determine the coefficients of Equation 6. This is
done to find a equation that can represent the plant of the T-RECS arm.

5.1 Drop Test

The first experiment was a drop test. In this test the arm was running the
code seen in appendix A.2. This code reads the angle of the arm and allow for
an input thrust command to the ESC. For this first test the thrust command
is left at 0. The arm is raised to 0 degrees and then released to fall down to
the table. A sponge was placed under the arm so it would not impact the
table. This set up can be seen in Figure 7.

| Arm Motor |
| PCB Power Out | | |
‘ MOSFET ‘
—|{ o3 p12 |- } il ‘ |f ! POW- A |
33V ou —
‘ v mi- g D E | !
\ 40 D5 = \ | ESC = |
| AL pg | | ‘ SIG ‘
A2 o7 |-
| W i i & Control Signal | | POV 2 ‘
| Dugm})n A5 2 : | . | |
| Sensor :[; [D’z | 2l | 2
v GND1 = - | |
| o b g1 B e e s i
| WIN DITX) |— i fal |
\ Arduino Nang | \
Power In
(TS .- o ey - PSR sy i | B _J
el
-1 1
‘ Rocker Switch Barrel Jack ‘
| — | 12V Power Supply
\

Figure 7: Drop Test set up

The data was recorded from the serial monitor, reduced to time of interest
and loaded into MatLab and plotted, see Figure 8. Code used can be found
in Appendix A.3. The test was run three times and averaged. This was used

°[

"""""" Drop Test 1
0 - = = :Drop Test 2
Drop Test 3
Polynomial Fit

-10 |

15 F

20 F

Angle (deg)

-25 T

-30

-35 F

-40 |

_45 i i i i i i i i i]
0 001 002 003 004 005 006 007 008 009 04

Time (s)

Figure 8: Drop Test: Time v. Angle

to create a polynomial fit, Equation 8.

0 = —2871.95t2 — 143.58¢ + 1.27741 (8)

The initial condition of the drop test are: u = 0,6(0) = 0,6(0) = 0. Using
these values in Equation 6 results in Equation 9.

04 Cy=0 9)

The second derivative of Equation 8 is Equation 10.

0 = —5743.89 (10)

This is substituted into Equation 9 enables us to solve for Cy. Cy =
5743.89. With this Equation 6 becomes:

10

6 + C16 + 5743.89 cos § = Cyu? (11)

5.2 Pendulum Test

Figure 9: Pendulum Test Setup

For this test the T-RECS arm was placed on its side to allow it to swing
like a pendulum. This set up can be seen in Figure 9. The arm was released
from 90 degrees and the angle and time was recorded. The data was shifted
so the the arm would seem like it was released 0 degrees. This was done so
the equation of the system would not have to be changed.

Equation 11 was used with the thrust equal to zero. This equation was
used to set up the a function in MatLab to solve the differential equation.
From this different C'; values were test. This can be seen in Figure 10. With
this the value of the coefficient was determined to be around 2.5. This value
is an estimation and could be further refined by testing more values of Cf.

11

20

Test Data

-20 1

-40 |

-60

-80

Angle (deg)

-100

-120

-140 |

_16[} i i i
0 0.2 0.4 0.6 0.8 1 1.2 1.4

Time (s)

Figure 10: Pendulum Test: Time v. Angle

5.3 Thrust Test

For this experiment the same code as in section 5.1 was used, but this time
instead of having a thrust input of 0, specific values were inputted. These
inputs resulted in the arm hovering at a specific angle. This data was recorded
and Matlab was used to plot the date in Figure 11.

A linear trend line was fitted and the thrust value at angle equal to 0
degrees was used to find (5. The initial condition of this experiment are:

0(0) = 0,6(0) = 0. Using these in Equation 11 yields Equation 12.

5743.89 cos) = Csu? (12)

This can be rearranged to solve for C5 in Equation 13.

12

251

20 1

157

10T

Angle (deg)
o

-10

-15 F

-20 |

-25
135

140 145 150 155
Thrust

Figure 11: Thrust Test: Thrust v. Angle

5743.89 cos 6
w2

Cs

(13)

From the trend line 2.27u — 331.39 = 6 at 0 degrees the thrust is 145.95.

Using this in Equation 13 solves for C5 = 0.2696 this gives Equation 14.

0+ 2.50 + 5743.89 cos § = 0.2696u2

(14)

This can be used to get the transfer function of the system as seen in

Equation 15.

0.2696
24 2.55 + 5743.89

13

(15)

6 Conclusion

This project gave the opportunity to learn about the Transportable Rotor-
craft Electronic Control System. The system was built from the kit, then
modeled, and from this model the parameters were identified. The hard-
ware was also explored to gain a better understanding of the systems and to
give insight in discerning what makes this system run. The transfer function
was found and this will be of great use in later projects and in designing a
feedback controller for the system in the future.

14

A Appendix

A.1 T-RECS: Components List

Components Guide:

1. 1xProgramming USB cable 11.2x M2 nuts

2. 1xWall adapter power supply 12.1x T-RECS PCB

3. 1xPropeller 13.1x Rotary position sensor
4. 4x M3 screws 14.2x 2-pinreceptacle

5. 4xM3 standoffs 15. 1x MOSFET

6. 4xM3 nuts 16.1x 4-pinreceptacle

7. 1x40 pin female connectors 17.1x Arduino Nano

8. 2xshaft bearinginserts 18.1x Power harness

9. 2xball bearings 19.1x 1306 brushless motor
10.2x M2 screws 20.1xESC

Figure 12: Components list from [2].

15

A.2 Arduino Code

// Simple program to test the Arduino’s
// ability to control ESCs/Brushless Motors

#include "Servo.h"

#define ESC_PIN (6) // PWM pin for signaling ESC
#define DRIVE_PIN (10) // Drive pin for power MOSFET
#define SENSOR_PIN (A0)

int sensorVal;

Servo ESC;
int speed = O;

void arm(){

Serial.print("Arming ESC... ");

digitalWrite(DRIVE_PIN, LOW); // Disconnect ESC from power

delay(500) ; // Wait 500ms for ESC to power down
setSpeed(0) ; // Set speed to 0
digitalWrite(DRIVE_PIN, HIGH); // Reconnect ESC to power

delay(2500) ; // 2.5 second delay for ESC to respond

Serial.println("Arming complete");

/* Callibrate ESC’s PWM range for first use */
void callibrate() {

Serial.print("Calibrating ESC... ");

digitalWrite(DRIVE_PIN, LOW); // Disconnect ESC from power
delay(500); // Wait 500ms

setSpeed (1000) ; // Request full speed
digitalWrite(DRIVE_PIN, HIGH); // Reconnect ESC to power
delay(5000) ; // Wait 5 seconds
setSpeed(0) ; // Request O speed
delay(8000) ; // Wait 8 seconds

Serial.println("Calibration complete");

16

void setSpeed(int input_speed){
//Sets servo positions to different speed
int us = map(input_speed, 0, 1000, 1000, 2000);
ESC.writeMicroseconds(us);

}

unsigned long myTime;

void setup() {
// Initialize serial communication
Serial.begin(115200) ;
// Configure MOSFET drive pin
pinMode (DRIVE_PIN, OUTPUT);
digitalWrite(DRIVE_PIN, LOW);

// Attach ESC to designated pin.
ESC.attach(ESC_PIN);

// Arm ESC
arm() ;

void loop() {
myTime = millis();

Serial.print(myTime); //prints time since program started
Serial.print(",");

sensorVal = analogRead (SENSOR_PIN);
Serial.println(-0.3656*sensorVal+185.64);

if (Serial.available()) {
// Check for calibration request
if (Serial.peek() == ’c’) {
Serial.println("Callibrating ESC");

17

callibrate();
Serial.read();

}

// Otherwise, interpret as new throttle value

else {
speed = Serial.parselnt();
Serial.println(speed);
setSpeed(speed) ;

}

}
+

A.3 MatLab Code
Yl hhhDrop Testhhhhhhl

clc
clear
close all

A = csvread(’Drop_Data_1.csv’);
B csvread(’Drop_Data_2.csv’);
C = csvread(’Drop_Data_3.csv’);

Anglel
Angle?2
Angle3

AC:,2).7;
B(:,2).°;
c(:,2).7;

nl
n2
n3

length(Anglel)/1000;
length(Angle2)/1000;
length(Angle3)/1000;

Timel
Time2
Time3

0:.001:(n1-.001);
0:.001:(n2-.001);
0:.001:(n3-.001);

pl = polyfit(Timel,Anglel,2);
p2 = polyfit(Time2,Angle2,2);

18

p3 = polyfit(Time3,Angle3,2);

p = [(mean([p1(1) p2(1) p3(1)]1))
(mean([p1(2) p2(2) p3(2)1)) (mean([p1(3) p2(3) p3(3)1N1;

figure(’Name’,’Drop Test Results’)

hold on

plot(Timel,Anglel,’:’,’LineWidth’,2)
plot(Time2,Angle2,’--’,’LineWidth’,2)
plot(Time3,Angle3,’-.’,’LineWidth’,2)

fplot(@(x) polyval(p,x), [0 .099],’LineWidth’,2)

ylabel(’Angle (deg)’)

xlabel (’Time (s)’)

legend(’Drop Test 1’,’Drop Test 2’,’Drop Test 3’,’Polynomial Fit’)

UWhh kA hhThrust Testhhhhhhl
clc

clear

close all

A = csvread(’T_theta.csv’);

Thrust = A(:,1).7;
Angle = A(:,2).7;

p = polyfit(Thrust,Angle,1);

P

figure(’Name’,’Thrust Test Results’)

hold on

plot(Thrust,Angle,’-0’)

fplot(@(x) polyval(p,x), [135 155],’LineWidth’,2)
ylabel(’Angle (deg)’)

xlabel (’Thrust’)

%legend (’Drop Test 1’,’Drop Test 2’,’Drop Test 3’,
’Polynomial Fit’)

19

WhhhhhrDiff-equationhlhhhh
function sdot = pentest(t,s)
C_1 = getGlobalx;
sdot = [s(2) ;
-C_1xs(2) - 5743.89*cosd(s(1))];

%G %hhPendulum Test%%hhlhh%hd%
clc
clear

A = csvread(’penTest.csv’);
t = A(:,1)/1000;
deg = A(:,2);

hold on
figure(1)
plot(t,deg,’b’,’LineWidth’,2)

tspan = [0 1.4];
IC = [0 0];

setGlobalx(2);

[t2,stateV] = oded45(’pentest’,tspan,IC);
theta = stateV(:,1);
plot(t2,theta,’r--’,’LineWidth’,2)

setGlobalx(2.5);

[t2,stateV] = oded45(’pentest’,tspan,IC);
theta = stateV(:,1);
plot(t2,theta,’g:’,’LineWidth’,2)

setGlobalx(3);

[t2,stateV] = ode45(’pentest’,tspan,IC);
theta = stateV(:,1);
plot(t2,theta,’m-.’,’LineWidth’,2)
ylabel(’Angle (deg)’)

20

xlabel (’Time (s)?)
legend(’Test Data’,’C_1 = 2’,’C_1 = 2.5”,°C_1 = 3’)

A.4 Thrust Equation

The base equations seen here were found in Mechanics and Thermodynamics
of Propulsion [1]. While this relation is not needed if one just relates the
impulse from the ESC in milliseconds to the angular velocity, these equations
were used first in the the derivation of other equations.

A is area of the blades. p is air density. V. is velocity of the exit stream.
V, is velocity of the incoming stream. V), is velocity of the propeller blade.
me in mass flow of the exit stream. m, in mass flow of the incoming stream.

Thrust = F = m.,V, —m,V, (16)

Vo =5(Ve =V) (17)
If V, is assumed to be far away then V, =0

Vo =.5(Ve) (18)
F =m.V, (19)
me = pV,A (20)
F = pV,A(2V;) (21)
F =2pAV? (22)

A.5 Arduino Nano pinout

21

Arduino Nano Pin Layout

9 . 00N @
D1/TX (1) jg 000 ;ng (30) VIN
DO/RX (2)||®| wuu.aroumo.cc | @) (29) GND
RESET (3)(@|**° 133 "N @[(28) RESET
"2 (5|e/mH Dn% 26 A0
D3 Al
D3 (6) g g (25) A1
D4 (7) g g (24) A2
D5 (8) € < (23) A3
D6 (9) 9.7 - @ (22) A4
SR 1 Al
D8 (11)| @ = (#/[20)
D9 (12) | @ X |(19) A7
D10 (13) |@ sa [@|(18) AREF
D1l
011 (14) [¢ | 1IN W@ f17)3vs
D12 (15) | @ e b ®|/(16) D13
[
]
1-2,5-16 | DO-D13 I/0 Digital input/output port 0 to 13
3,28 RESET Input Reset (active low)
4,29 GND PWR Supply ground
17 3V3 Output +3.3V output (from FTDI)
18 AREF Input ADC reference
19-26 A7-A0 Input Analog input channel 0 to 7
27 +5V Output or | +5V output (from on-board regulator) or
Input +5V (input from external power supply)
30 VIN PWR Supply voltage

A.6 ESC Datasheet

23

User Manual
Multi-Rotor Brushless ESC
Swift 4#it+q °nk,

high power system for RC model can be dangerous ,we strongly recommend reading the user manual carefully and completely. We will not assume any responsibility for any losses

.Q Thank you for purchasing our brushless electronic speed controller (ESC) . Any Improper operation may cause personal injury damage to the product and related equipments. This
caused by unauthorized modifications to our product,

01 Main features

eHigh performance MCU.

eMini size, lighter in weight.

e0ptimized firmware is specialized for disc motor,excellent compatibility.

eoThe firmware is specialized for multi-rotor , fast throttle response during flying.

eStrong self-adaptable firmware, 8 timing options.

eSupport frequency of throttle signal to 500Hz max , compatible with various kinds of flight control. [2500Hz throttle signal is nonstandard signal)

@)= Specification

Model Con.Current SUr$hBanrent BEC LiPo cells Weight (Exclud e Plugs) {ypisalapplications
Swift -8A BA 8A 5V/1A 2-45 6.7g 28x13x5mm 200-250 Multi-Rotor
Swift -10A 10A 15A 5V/1A 2-45 8.6g 28x15x6mm 200-280 Multi-Rotor
Swift -12A 12A 18A 5V/1A 2-4S 9.5¢g 28x15xBmm 200-330 Multi-Rotor
Swift -15A 15A 20A 5V/1A 2-43 9.5¢g 28x15x6mm 250-450 Multi-Rotor
Swift -20A 20A 30A 5V/1A 2-4S 10g 28x15x6mm 330-550 Multi-Rotor
Swift -30A 30A 40A 5V/1A 2-48 11g 28x15x6mm 330-650 Multi-Rotor
Swift -40A 40A 50A No 2-6S 15g 40x21x7mm 450-850 Multi-Rotor
Swift -50A 50A B60A No 2-6S 16g 40x21x7mm 650-1000 Multi-Rotor

03 Wiring diagram

Please ensure all solder joints are insulated with heat shrink where necessary.

Receiver

E8ith
Battery

*All pictures are for reference only

@p Programming parameter value

Programming parameters below in table that can be accessed from the remote control or configuration software (BLHeliSuite):

Function 1 2 3 4 5 6 7 8 g 10 11 12 13
1 - Closed loop P gain 0.13 0.17 0.25 0.38 0.50 0.75 1.00 1.5 2.0 3.0 4.0 6.0 8.0
2 -Closed loop | gain 0.13 0.17 0.25 0.38 0.50 0.75 1.00 1.5 2.0 3.0 4.0 6.0 8.0
3 - Closed loop mode HiRange MidRange LoRange Off / / / / / / / / /
4 - Multi gain 0.75 0.88 1.00 1.12 1.25 / / / / / / / /
5 - Startup power* * 0.031 0.047 0.063 0.084 0.125 0.188 0.25 0.38 0.50 0.75 1.00 1.25 1.50
6 - Commutation timing Low MediumLow Medium MediumHigh High / / / / / / / /
7 - Pwm frequency High Low *DampedLight / / / / / / / / / /
8 - Pwm dither Off 7 15 31 63 / / / / / / / /
9 - Demag compensation off Low High / / / / / / / / / /
10 - Rotation direction Normal Reversed Bidirectional / / / / / / / / / /
11 - Input pwm polarity Positive Negative / / / / / / / / / / /

Default values are marked in dark gray.
*:0nly enabled for some ESCs. From code rev 14.4, damped light is default on the ESCs that support it. For prior code revisions, high is default
**: Default startup power varies by ESC. Generally the default power is lower for larger ESCs

1. Closed loop P gain sets the proportional gain for the rppm control loop. This setting controls the gain from speed error to motor power.
2. Closed loop | gain sets the integral gain for the rpm control loop. This setting controls the gain from integrated speed error ([summed over time) to motor power.
3. Closed loop mode sets the range of speeds that the control loop can operate on.

- For the high range, throttle values from 0% to 100% linearly correspond to rpm targets from O to 200000 electrical rpm

- For the middle range, throttle values from 0% to 100% linearly correspond to rpm targets from O to 100000 electrical rpm

- For the low range, throttle values from 0% to 100% linearly correspond to rpm targets from O to 50000 electrical rpm

- When closed loop mode is set to off, the control loop is disabled
4.Multi gain scales the power applied to the motor for a given input. Note that this is only for PWM input, for PPM input it has no effect. Beware that a low multi gain will also limit the maximum power to the motor.
5. Startup is always done with the direct startup method, which runs the motor using back emf detection from the very start. In this mode power is given by the throttle used, but limited to a maximum level
This maximum level can be controlled with the startup power parameter. Beware that setting startup power too high can cause excessive loading on ESC or motor!
6. Commutation timing can be adjusted in three steps. Low is about 00, mediumlow 80, medium 150, mediumhigh 230 and high 300. Typically a medium setting will work fine, but if the motor stutters it can be
beneficial to change timing
7.Pwm frequency

-High: High pwm frequency is around 20kHz

-Low: Low pwm frequency is around 8kHz.

-Damped light : This mode adds loss to the motor for faster retardation. Damped light mode always uses high pwm frequency. This mode is only supported on some ESCs (where fet switching is sufficiently fast).
8.Pwm dither is a parameter that adds some variation to the motor pwm off cycle length. This can reduce problems (like throttle steps or vibration) in rpm regions where the pwm frequency is equal to harmonics of

the motor commutation frequency, and it can reduce the step to full throttle. It is primarily beneficial when running damped light mode. Dither is not applied in closed loop mode.
9.Demag compensation is a feature to protect from motor stalls caused by long winding demagnetization time after commutation. The typical symptom is motor stop or stutter upon quick throttle increase,

particularly when running at a low rpm. As described earlier, setting high commutation timing normally helps, but at the cost of efficiency.

Generally, a higher value of the compensation parameter gives better protection. If demag compensation is set too high, maximum power can be somewhat reduced.
10. The rotation direction setting can be used to reverse motor rotation
11.The input pwm polarity setting can be used to inverse the throttle behaviour. This is intended to be used with receivers that provide negative pwm. When using PPM input it must be set to positive.

Programming parameters that can only be accessed from configuration software (BLHeliSuite):
- Throttle minimum and maximum values for PPM input (will also be changed by doing a throttle calibration).
- Throttle center value for bidirectional operation with PPM.
- Beep strength, beacon strength and beacon delay.
- Programming by TX. If disabled, the TX can not be used to change parameter values (default is enabled).
- Thermal protection can be enabled or disabled (default is enabled).
Temperature is above 140°C, motor power is limited to 75%;Above 145°C, motor power is limited to 50%;Above 150°C, motor power is limited to 25%.Above 155°C, motor power is limited to 0%
-PWM input can be enabled or disabled (default is disabled). If disabled, only 1-2ms PPM and 125-250us OneShot125 are accepted as valid
input signals.
- Power limiting for low RPMs can be enabled or disabled (default is enabled). Disabling it can be necessary in order to achieve full power on some low kV motors running on a low supply voltage. However, disabling
it increases the risk of toasting motor or ESC

References

[1] Philip G Hill and Carl R Peterson. Mechanics and thermodynamics of
propulsion. 1992.

2] TANGIBLES THAT TEACH. Part 1 Instructions (Device Assembly and
Testing), Accessed Feb 2021.

25

